Difference between revisions of "Einstein:Book chapter 06  The Theorem of the Addition of Velocities employed in Classical Mechanics"
Eric Baird (Talk  contribs) m (1 revision imported) 
Eric Baird (Talk  contribs) m (Eric Baird moved page Einstein:Book chapter 06 to Einstein:Book chapter 06  The Theorem of the Addition of Velocities employed in Classical Mechanics) 
(No difference)

Latest revision as of 01:07, 18 July 2016
Albert Einstein: Relativity: The Special and the General Theory
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17  
18
19
20
21
22
23
24
25
26
27
28
29  
30
31
32
6: The Theorem of the Addition of Velocities employed in Classical Mechanics
LET us suppose our old friend the railway carriage to be travelling along the rails with a constant velocity [math]v[/math], and that a man traverses the length of the carriage in the direction of travel with a velocity [math]w[/math].
How quickly or, in other words, with what velocity [math]W[/math] does the man advance relative to the embankment during the process? The only possible answer seems to result from the following consideration: If the man were to stand still for a second, he would advance relative to the embankment through a distance [math]v[/math] equal numerically to the velocity of the carriage. As a consequence of his walking, however, he traverses an additional distance [math]w[/math] relative to the carriage, and hence also relative to the embankment, in this second, the distance [math]w[/math] being numerically equal to the velocity with which he is walking. Thus in total he covers the distance [math]W = v + w[/math] relative to the embankment in the second considered.
We shall see later that this result, which expresses the theorem of the addition of velocities employed in classical mechanics, cannot be maintained; in other words, the law that we have just written down does not hold in reality. For the time being, however, we shall assume its correctness.